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Abstract

Objective:
We sought to develop a computerized clinical decision support for clinicians treating patients with type 2 
diabetes mellitus (T2DM).

Methods:
We designed, developed, and tested a computer-assisted decision support (CADS) system using statistical 
analyses of self-monitoring of blood glucose data, laboratory data, medical and medication history, and 
individualized hemoglobin A1c goals. A rule-based expert system generated recommendations for changes in 
therapy and accompanying explanations.

Results:
A clinical decision support system (CADS) was developed that considers 9 classes of medications and 
69 regimens with combinations of up to 4 therapeutic agents. The preferred sequences of regimens can 
be customized. The program is integrated with a “comprehensive diabetes management system,” electronic 
medical record systems, and a method for uploading data from memory glucose meters via telephone without 
use of a computer or the Internet. The software provides a report to the clinician regarding the overall 
quality of glycemic control and identifies problems, e.g., hypoglycemia, hyperglycemia, glycemic variability, 
and insufficient data. The program can recommend continuation of current therapy, adjustment of dosages of  
current medications, or change of regimen and can provide explanations for its recommendations. If the user  
rejects the recommendations, the program will recommend alternative approaches. The CADS also provides 
access to Food and Drug Administration-approved prescribing information, guidelines from professional 
organizations, and selections from the general medical literature. The system has been extensively tested with 
real and synthetic data and is ready for evaluation in multicenter clinical trials.

Conclusion:
A clinical decision support system to assist with the management of patients with T2DM was designed, 
developed, tested, and found to perform well.
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Introduction

Software to adjust insulin dosages and regimens for 
patients with type 1 diabetes has been under development 
since 1985.1–6 Based in part on this experience,6 Mazze and 
colleagues7,8 developed “staged diabetes management” 
for type 2 diabetes mellitus (T2DM). However, to date, 
there has been no computer-assisted decision support 
(CADS) program for managing T2DM. Some have argued 
that the task is impossible and should not even be 
attempted on the basis that management of patients 
with T2DM is too complex for application of an “artificial 
intelligence” decision support system.

Computer-assisted decision support systems, which provide  
alerts, reminders, recommendations, and critiques of  
clinicians’ decisions, have been demonstrated to improve 
quality of care in many but not all settings.9 Systems for 
selecting antibiotics,10,11 implementing cancer chemo-
therapy protocols,12 adjusting warfarin therapy,13,14 adjusting 
dosages in pediatric and geriatric settings, and warning 
of drug–drug interactions have been implemented and 
tested,15 generally resulting in improved compliance with 
guidelines and improved clinical outcomes. However, 
in three other applications (congestive heart failure, 
hypertension, or ischemic heart disease), clinical decision 
support systems did not appear to improve quality of 
care.16–18 In the face of the large and rapidly growing 
number of patients with T2DM worldwide, the failure 
of most patients to achieve the goals for glycemia  
and glycated hemoglobin (A1C)19–22 and a corresponding 
shortage of endocrinologists,23 such that the majority 
of patients with T2DM receive care from primary care 
providers (PCPs), including physicians, physician assistants, 
and nurse practitioners, a CADS system may potentially 
be of benefit to clinicians and their patients.

Developing a CADS system for diabetes poses many 
challenges. Since 1990, there has been a dramatic increase 
in the number of therapeutic options available in the 
United States, now reaching 13 classes of medications—
sulfonylureas, biguanides, glinides, thiazolidinediones, 
dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like 
peptide-1 (GLP-1) analogs, alpha-glucosidase inhibitors, 
a bile acid sequestrant, a dopamine agonist, an amylin 
analog, long-acting insulin analogs, intermediate acting 
insulin, and rapid-acting insulin analogs. There are 
multiple medications within most of these classes, multiple 
brand names for some drugs, and several commercially 
available combinations of two agents. The enormous 
number of possible combinations of therapeutic agents 

(more than 200) makes it difficult for clinicians to be  
familiar with the advantages and limitations of all available 
approaches. With 9 classes of agents (not including rapid- 
acting, short-acting, intermediate-acting, biphasic insulin 
and pramlintide) there are 9 forms of monotherapy,  
36 potential types of dual therapy, 84 potential types 
of triple therapy, and 126 theoretically possible types  
of quadruple therapy, for a total of 256 regimens, 
including lifestyle modifications alone. The present 
version of the program handles 69 regimens, which is 
more than sufficient to cover the much smaller number 
of regimens (22 in addition to an unspecified number of 
regimens including insulin) considered by the American 
Association of Clinical Endocrinologists/American College 
of Endocrinology (AACE/ACE) algorithm24 or the 7 
regimens offered by the American Diabetes Association/ 
European Association for the Study of Diabetes algorithm.25 
We do not advocate or recommend all of the possible 
combinatorial arrangements of therapy, but we include 
mention of many of them because some patients may 
be receiving an unusual, suboptimal, or inappropriate 
combination of therapies as prescribed by another clinician. 
Table A.9 in the Appendix provides a partial listing of 
inappropriate regimens; the CADS software screens for 
their presence and provides warnings as appropriate. 
New classes of medications are in clinical trials. There has 
also been a proliferation of treatment pathways or 
algorithms for treatment of patients with T2DM.8,24–28 
Clinicians who closely monitor the literature may find it 
challenging to select a set of rules or treatment pathway  
for management of patients with T2DM. Several regimens 
are in widespread use by endocrinologists but have not  
yet been approved by the FDA (e.g., the combination of 
GLP-1 receptor agonists and insulin).29

Several additional challenges confront the clinician in 
managing patients with diabetes, including difficulty in 
assessing the quality of glycemic control, difficulty in 
obtaining adequate amounts of accurate self‑monitoring of  
blood glucose (SMBG) data, insufficient time and resources 
for analysis and review of SMBG data, and limited 
accessibility of important clinical data. Clinicians often 
fail to identify current problems of glycemic control 
and fail to adjust therapy in a timely and effective 
manner.20,21,30,31 Thus, there appears to be the need for 
a clinical decision support system. We have developed 
a CADS system intended for use by PCPs. The system 
is based on the following inputs: (1) clinical information, 
including diagnoses (comorbidities), medication history 
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(including medications that had been used previously 
and found to be ineffective or poorly tolerated), history 
of adverse events, and laboratory data; (2) SMBG data; 
(3) rules for titrating dosages of individual medications; 
(4) rules for adding or discontinuing medications; and  
(5) rules for individualizing goals for A1C and for glucose 
by time of day. The system provides the following outputs: 
(1) comprehensive analysis, display, and interpretation 
of the available SMBG data; (2) recommendations for 
possible changes in therapy with brief explanations of  
the rationale for those recommendations; (3) ability to  
recommend several options for therapy with explanations 
of their rationales; and (4) educational materials for health 
care professionals and patients, including prescribing 
information and access to the medical literature, including 
guidelines and algorithms from authoritative sources.

Methods
The present system was developed with the following 
design principles: safety, optimization of usability, flexibility, 
customizability, adaptability, inclusiveness, expansibility, 
and integration with existing electronic medical records, 
laboratory information systems, and other specialized 
electronic systems for diabetes case management. The CADS  
system has a number of design constraints in this 
prototype: (1) it does not consider use of an insulin 
pump [continuous subcutaneous insulin infusion (CSII)], 
gestational diabetes, type 1 diabetes, hospitalized patients, 
diabetic ketoacidosis, or hyperosmolar coma; (2) it does 
not include two classes of oral agents (colesevelam and 
bromocriptine) that are Food and Drug Administration 
(FDA) approved for management of T2DM; and (3) it does 
not currently include several injectable medications for 
preprandial use (regular human insulin, rapid-acting 
insulin analogs, biphasic insulins, pramlintide).

The CADS system is currently integrated with the 
comprehensive diabetes management program (CDMP),32 
a multiplatform, Web-based system for diabetes case 
management currently used at several medical centers 
(Walter Reed Army Medical Center, Wilford Hall Medical 
Center, University of Hawaii-affiliated clinics, Boston 
Veterans Administration Hospital, the Indian Health 
Service, and Joslin Diabetes Center).

Patients can upload SMBG data even without direct 
access to a computer or the Internet. A MetriLink device 
(www.imetrikus.com) transmits data via telephone lines 
from the glucose meter to the iMetrikus server, which 
then transmits the data automatically via the Internet 
to the CDMP and CADS system. Alternatively, SMBG 

data can be uploaded via a computer using a password-
protected patient portal, which also allows patients to 
review their data together with statistical and graphic 
analyses. The algorithms have been developed as table-
driven logic to facilitate future changes. Similarly, the 
messages to the end users are table driven, making 
it easy to update those messages in accord with the 
prevailing philosophy and practices of medical centers 
or individual clinicians. The system has evolved through 
dozens of versions over a period of 5 years and has 
been tested extensively using synthetic and anonymized 
patient data. We have tested more than 1500 sets of input  
data to cover a wide range of parameters: target A1C 
and glucose target ranges; extent of SMBG data; patient 
characteristics (age), mixtures of hyperglycemia and 
hypoglycemia, and magnitude of glycemic variability; 
number of medications; types and combinations of 
medications; comorbid conditions (renal, hepatic, cardiac, 
gastrointestinal); adverse events presumably related to 
medications; drug–drug interactions; and failure to respond 
to previous medications. The logic and computer code 
has been modified iteratively in response to this testing. 
Several individuals have traced through the computer code 
to verify accuracy of implementation of the algorithms. 
Partially automated methods for testing of multiple cases 
have been set up and used extensively.

Results

Structure
The CADS system for diabetes management has four 
components. First, a “patient” component permits remote 
or clinic-based upload of glucose meter data into a database. 
The system provides options to provide patient‑accessible  
graphic, statistical, and tabular summaries of the SMBG 
data, information regarding medications, and electronic 
communications between patient and clinical personnel. 
Second, a “health care professional” component enables 
the clinician to set goals for A1C and the target ranges 
for preprandial and postprandial glycemia for each patient 
or group of patients. It displays the current medications, 
medication history, allergies, contraindications, and 
comorbidities. It provides detailed statistical and graphic 
displays of the glucose data and identifies clinical problems 
such as hyperglycemia or hypoglycemia, excessive post-
prandial excursions, or excessive glycemic variability within 
specified time periods (e.g., 07:00–09:00, before breakfast). 
The software then generates primary and alternative 
recommendations for patient management and provides 
options to accept or reject those recommendations. Third, 
an “administrator” component enables the medical 
leadership of each clinic or clinical practice to specify the 
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medications to be included and revise the algorithms by 
adjusting types, doses, or combinations of medications. 
The algorithms utilize a prespecified sequence of regimens 
that reflects published algorithms24–28 as modified in 
accord with local preferences. Fourth, an “educational” 
component provides links to guidelines and algorithms 
for management of diabetes, FDA-approved prescribing 
information, and relevant literature.

Rules Underlying the Computer-Assisted Decision 
Support Program
Figure 1 shows a simplified view of the sequence of 
regimens. Most commonly, an algorithm sequence 
progresses down the central column from one to two 
to three and possibly to four oral agents. The GLP‑1 
(left column) analogs can be used in lieu of one of the 
oral agents. Alternatively, the program can add insulin 
(right column), or when these regimens fail to achieve 
goal, may begin eliminating oral agents to reduce cost 

Figure 1. Simplified overview of the algorithm. In addition to the 
transitions between adjacent therapies as shown by arrows, one can 
also transition from 0 to 2 or 0 to 3 medications or from 3 or 4 back  
to 0, 1, or 2. These additional transitions are not shown. The options 
for therapy involving four agents are generally avoided due to cost, 
complexity, issues of patient adherence, and difficulty in evaluating the 
efficacy of each of the agents.

and complexity, relying progressively on insulin therapy.  
Figure 2 shows a schematic version of commonly used 
regimens and one of several options for sequence of use 
based in large part on the AACE/ACE algorithm.24 
The clinician has the opportunity to accept or reject a 
recommendation; an alternative is then provided. Table 1 
provides a summary of the logic used in this algorithm.

The logic underlying the CADS program can be shown in  
a series of tables (Appendix, Tables A.1–A.9). These include

A. Therapeutic lifestyle changes
1.	 Diet and exercise

B. Monotherapy
2.	 Metformina

3.	 DPP-4 
4.	 GLP-1 
5.	 Thiazolidinedione
6.	 Alpha glucosidase inhibitor
7.	 Sulfonylurea

C. Dual therapy
8.	 Metformin + DPP-4
9.	 Metformin + GLP-1
10.	 Metformin + thiazolidinedione
11.	 Metformin + sulfonylurea
12.	 Metformin + alpha glucosidase inhibitor
13.	 Thiazolidinedione + DPP-4
14.	 Thiazolidinedione + GLP-1
15.	 Thiazolidinedione + sulfonylurea

D. Triple therapyb

16.	 Metformin + DPP-4 + thiazolidinedione
17.	 Metformin + GLP-1 + thiazolidinedione
18.	 Metformin + DPP-4 + glinide
19.	 Metformin + GLP-1 + glinide
20.	 Metformin + DPP-4 + sulfonylurea
21.	 Metformin + GLP-1 + sulfonylurea
22.	 Metformin + thiazolidinedione + sulfonylurea

E. Insulin with or without other agents
23–38. Insulin + 0, 1, 2, or 3 other agentsc

a Metformin is generally regarded as the cornerstone of therapy.26

b Options for quadruple therapy are not included here for brevity.
c Since GLP-1 agonists have not yet been FDA approved for 

concomitant use with insulin, the six options corresponding to 
regimens 4, 9, 14, 17, 19, and 21 are not included here.

Figure 2. Sequence of treatment regimens. Each of these medication 
regimens can be combined with basal insulin, creating regimens 23–38.  
Many more combinations are potentially available. Combinations 
of insulin + GLP-1 agonists have not been approved by the FDA. 
Combinations of insulin + thiazolidinedione may lead to excessive 
weight gain, fluid retention, and occasionally (2% of cases) congestive 
heart failure and might increase the risk of ischemic heart disease. 
Combinations of a sulfonylurea or glinide with insulin therapy and 
other agents carry an increased risk of hypoglycemia. Agents that 
are expected to be effective for control of PPG (glinides, DPP‑4, 
GLP‑1, alpha glucosidase inhibitors) would ordinarily be used with  
basal insulin but not with prandial, premixed, or basal–bolus insulin 
therapy. Sitagliptin has been approved by the FDA for use with 
insulin; to date, saxagliptin has not been approved for use with  
insulin in the United States. Approved usage varies in other countries. 
Exenatide has been approved for monotherapy; to date, liraglutide has 
not been approved for monotherapy in the United States.

http://www.journalofdst.org/March2011/Articles/VOL-5-2-ORG9-RODBARD-APPENDIX.pdf
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classes of medications (Table A.1); therapeutic regimens 
(69) based on combinations of 0 to 4 of these classes 
of medications [Table A.2; these regimens exclude 
combinations of classes of agents that are not approved 
by the FDA (e.g., GLP-1 agonists combined with insulin) 
and combinations of agents with similar mechanisms 
of action (e.g., sulfonylureas and glinides or DPP-4 
inhibitors and GLP-1 agonists)]; an example of sequences 

Table 1.
Simplified Overview of Algorithm
Step Procedure

1.
Read data: patient identifier, target A1C, current medications, medication history, comorbidities, laboratory data, allergies, gender, 
contraindications, SMBG data. 

2.
Assess whether sufficient SMBG data are available and whether glycemic patterns are sufficiently stable with respect to 
longitudinal date in order to be able to make recommendations.

3.
Assess current quality of glycemic control using multiple criteria (mean levels; preprandial and postprandial levels; postprandial 
excursions; variability; frequency, severity, and timing of hypoglycemia and hyperglycemia; and adequacy of SMBG monitoring). 

4.
Identify any new contraindications (e.g., allergy; cardiac, renal, hepatic disease; pregnancy; hospitalizations); if appropriate, 
discontinue one or more of the current medications.

5.
Identify possible medication-related adverse events. If unacceptable and not expected to subside with temporary dosage 
adjustment, recommend discontinuation of that medication and replacement by another medication.

6.
Assess adequacy of current therapy for all times of day: mean, standard deviation, percentage hyperglycemic, percentage 
hypoglycemic.

7. If patient has achieved goals, continue current regimen and dosages.

8. 
Assess problems related to hypoglycemia at each of eight specified time periods:a identify the medications that are primarily 
responsible for control of blood glucose during the time periods when hypoglycemia is occurring. Recommend dosage reduction 
for these medications.

9. 

Assess problems related to hyperglycemia at each of several (e.g., eight) specified time periods: identify the medications that 
are predominantly responsible for control of blood glucose during these time periods and recommend an increase in dosage 
of those medications if there are no problems with hypoglycemia during the time periods controlled by this same medication, 
provided that the dosage does not exceed the usual maximal effective dose.

10.

Assess problems related to postprandial excursions at each of the three principal meals. Identify the medications primarily 
responsible for control of the postprandial excursions. Make recommendations regarding the meal content (protein, fat, 
carbohydrate), amount or glycemic index of carbohydrates, and timing of medications with respect to meals (e.g., GLP-1 agonists, 
DPP-4 inhibitors, glinides, alpha-glucosidase inhibitors).

11. 
Recommend advancement to the next regimen in the treatment pathway (algorithm). If the current medications have been 
titrated to their maximally effective doses and hyperglycemia or excessive postprandial excursions persist, then consider changing to the 
“next” regimen in the sequence, i.e., adding an additional agent with a different mechanism of action than the current medications. 

12. Assess adequacy of SMBG monitoring. Recommend revised schedule for SMBG testing and provide explanation/rationale. 

13. Assess complexity and cost of the current regimen; if excessively complex or costly, consider simplifying the regimen.

14.
Periodically reassess treatment goals for A1C, mean glucose, and the preprandial glucose and PPG values. If the patient is 
unable to achieve goal or develops new comorbidities or other factors limiting treatment, adjust goals for glycemia to keep the risk 
of hypoglycemia within an acceptable level. 

15.
Provide explanations for recommendations, making it possible for the clinician to understand the logic being utilized by the 
program.

16. Allow the clinician to accept or reject (override) recommendations.

17. 
If the clinician rejects the initial set of recommendations, provide an alternative set of recommendations regarding therapy, 
together with explanations and rationale.

18. Provide access to educational materials for clinician and patient.

19. Generate instructions to be given to the patient.

a Time periods are also designated as “time buckets,” “time windows,” or “time segments,” e.g., “before lunch,” 11:00–12:30.

of therapeutic regimens (Table A.3); an algorithm for 
reduction of dosage or discontinuation of a medication 
in response to significant problems with hypoglycemic 
episodes (Table A.4); an algorithm for increase of dosage 
of a medication in response to a significant problem with 
hyperglycemia (Table A.5); an algorithm for generating 
recommendations for change of treatment regimen with 
the addition of a new class of medication in response  
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to failure to achieve goals for A1C, fasting plasma glucose 
(FPG) and/or postprandial glucose (PPG) (Table A.6);
a simplified schematic representation of the pharmaco-
dynamics of each class of medication that facilitates the 
identification of the medication(s) principally responsible 
for glycemic control at any specified time of day  
(Table A.7); suggested target levels for preprandial glucose 
and PPG values and recommended frequency of SMBG 
testing for specified target levels of A1C (Table A.8; 
as the target A1C level is lowered, the upper and lower 
limits for preprandial glucose and PPG values should 
also be adjusted); and inappropriate combinations of 
therapeutic agents (Table A.9).

Analysis of SMBG Data
We have developed several criteria to assess the following:  
(1) overall level of glycemic control; (2) hypoglycemia;  
(3) hyperglycemia; (4) variability; (5) patterns, e.g., post-
prandial excursions, systematic changes during the day, 
rebound from hypoglycemia, and overtreatment of hyper-
glycemia; and (6) adequacy of monitoring (SMBG) as a  
function of the level of the desired intensity of control, type 
of regimen, and current A1C level. These criteria are table 
driven and can be modified (Appendix, Tables A.1–A.8).
The following types of graphic displays can be 
generated:30,33–37 (1) glucose by date; (2) glucose by time 
of day; (3) glucose by day of the week; (4) glucose by time 
of day displayed separately for each day of the week; 
(5) pie charts and/or “stacked bar charts” to show the 
distribution of glucose values for any selected number  
of categories from “very very low” (e.g., <40 mg/dl) to 

“very very high” (e.g., >400 mg/dl) by date, time of day, 
or in relationship to meals or by day of the week;32 and 
(6) a “color-coded dot matrix” graphic display showing 
glucose by date and time of day in a new compact format.37

The program calculates the mean; standard deviation; 
standard error of the mean; minimum; 10th, 25th, 50th, 
75th, and 90th percentiles; maximum; interquartile range; 
percentage of glucose observations above one or more  
specified thresholds for hyperglycemia; percentage of 
glucose values below one or more thresholds for 
hypoglycemia; and a measure of adequacy of monitoring. 
Results are presented for all data, and for eight separate 
times of day: before breakfast, after breakfast, before 
lunch, after lunch, before dinner, after dinner, bedtime, 
and overnight (03:00–04:00). Similar statistics are also 
reported for postprandial excursions when pairs of 
premeal and postmeal values are available for a given 
meal on the same day. Several scores for the quality of 
glycemic control are calculated, including overall control, 
hypoglycemia, hyperglycemia, postprandial excursions, 

variability, and adequacy of monitoring. The software 
then sets logical variables (“flags”) for these events 
or combinations of events, which can then be used to 
trigger the display of alerts and other messages to the 
clinician, e.g., “significant hypoglycemia is occurring  
in the ‘before dinner’ time period” or “insufficient number 
of glucose measurements.”

Interpretation of SMBG Data
The principal goal of the “interpretation” section of the 
program is to assess whether the current treatment should 
be modified. A preliminary analysis assesses the following:

1.	 Are the SMBG data current? Are there sufficient 
data to make recommendations?

2.	 What is the date of the most recent A1C value? Is it 
current? What is the A1C value?

3.	 Is the A1C value from the laboratory consistent with 
the A1C predicted on the basis of the SMBG data?38

4.	 Has the patient achieved goals for A1C value, average 
fasting glucose, and average PPG?28

5.	 Is the patient experiencing significant hypoglycemia 
or adverse events, or does the patient have any 
contraindications to any of the medications?

6.	 Is the patient female and of potential child-bearing 
age, and if so, are there any indications that she is 
pregnant or planning to become pregnant?

The program utilizes a very simplified schematic 
representation of pharmacodynamics to identify the 
types of medication and times of administration that  
are primarily responsible for control of glucose at any 
specified time of day using a rating on a scale of  
1 to 10 (Table A.7). Since there are often diminishing 
returns in terms of efficacy for doses above 50% of 
the FDA-approved maximal doses for several oral 
anti-diabetic agents, the algorithm will not recommend 
increases above these levels. The program identifies 
glycemic “problems,” times of day when they occur, and 
the medications that are most likely to be primarily 
responsible. It first addresses problems involving hypo-
glycemia, recommending that the clinician inquire 
whether there is an obvious or trivial explanation and 
then reducing the dosage of the responsible medication(s). 
After problems with hypoglycemia have been addressed, 
the program will generate recommendations regarding 
hyperglycemia, e.g., suggesting an increase in dosage for 

http://www.journalofdst.org/March2011/Articles/VOL-5-2-ORG9-RODBARD-APPENDIX.pdf
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one of the current medications or suggesting the addition 
of another therapeutic agent. It may also suggest the 
substitution of one drug for another or the simultaneous 
addition of one or more medications and discontinuation  
of one or more of the current medications.

A typical output with a list of the major problems 
identified by analysis of the SMBG data and 
recommendations for modification of therapy is shown 

in Figure 3. All recommendations are accompanied 
by a caveat reminding clinicians to use their best 
judgment and, if in doubt, to seek further guidance 
from knowledgeable and authoritative sources before 
implementing recommendations generated by the 
program. The program can provide a brief explanation 
of the rationale underlying each recommendation.  
Users can accept or reject recommendations and record 
their own rationale.

Figure 3. Representative output of the CADS program.



409

Design of a Decision Support System to Help Clinicians Manage Glycemia  
in Patients with Type 2 Diabetes Mellitus Rodbard

www.journalofdst.orgJ Diabetes Sci Technol Vol 5, Issue 2, March 2011

Discussion
We have successfully developed an operational CADS 
system. It interfaces with other systems to collect data 
from glucose meters via the MetriLink device and with 
the CDMP system, which provides the user interface. 
The CADS system interfaces with an electronic medical 
record to access additional clinical data (medication history, 
allergies, laboratory data, other diagnoses), although manual 
entry of medication and laboratory data is possible.  
Safety and appropriateness of the recommendations has 
been evaluated for a large range of combinations of 
patient data, regimens, target goals for A1C, extent 
of SMBG data, target ranges for hypoglycemia and 
hyperglycemia, and contraindications. The sequence of 
use and the pathway for addition of new drugs as shown 
in Figures 1 and 2, and Tables A.2 and A.3 illustrate 
a subset of possible pathways; CADS has flexibility 
that permits an “administrator” to specify nearly any 
conceivable pathway.

The logic underlying the CADS system has evolved 
considerably during its development since its initial 
presentation39,40 because of several factors: (1) additional 
approved agents for treatment (DPP-4 inhibitors, GLP-1 
agonists) and indications (e.g., exenatide for monotherapy 
and the combination of sitagliptin and insulin),  
(2) new treatment algorithms,24–28 (3) the need for 
individualization of A1C goals in light of clinical trials 
indicating that the cardiovascular risks of intensive 
therapy are strongly dependent on duration of diabetes 
and the presence and severity of cardiovascular disease,41 
(4) new measures of the overall quality of glycemic 
control and variability,42,43 (5) new methods for graphic 
display of SMBG data,33–37 and (6) the need for the ability 
to quickly and easily revise, test, and maintain the  
CADS system.

In the future, we plan to customize the systematic approach 
utilized here for application to special populations, e.g., 
the elderly, women who are pregnant or planning to 
become pregnant, women with gestational diabetes, 
T1DM patients, and T1DM or T2DM patients using 
CSII. Additional features need to be added to permit 
adjustment of prandial insulins when using either 
multiple daily injections or CSII, basal rates (CSII), and 
biphasic insulins.6 We have previously implemented 
computer algorithms for adjustment of several of 
these forms of insulin therapy6 based on the “Skyler 
algorithms.”44,45 Other planned generalizations and 
extensions of this system include adaptation to other 
health care systems, including those that rarely utilize 

SMBG for those patients with T2DM who are not 
receiving insulin, adaptation to languages other than 
English, use of mmol/liter rather than mg/dl, and the  
use of continuous glucose monitoring. Introduction of 
the CADS system places some potential burdens on both  
patient and clinician. The patient’s glucose meter must be 
properly calibrated, accurate, and precise. The patient 
must adhere closely to the prescribed SMBG testing 
schedule and periodically submit the data to a central 
server. The clinician should be familiar with the algorithm, 
its principles, and the risk‑benefit profile of each class 
of medications. Goals for glycemic control must be 
set appropriately and revised periodically as needed.  
The clinician would need to learn how to use the  
CADS/CDMP program and become familiar with routine 
use of the analysis, interpretation, and recommendations  
as provided by the program. Performance of the system  
will depend on the completeness and accuracy of  
input data.

Any program could potentially generate erroneous or 
suboptimal advice. The chief protection against this is 
the clinical judgment and experience of the clinician 
utilizing the program. However, there is always a 
possibility that the clinician will misread or misinterpret 
the output of the program. This risk is mitigated in 
part by redundancy within the program (e.g., severe or 
frequent hypoglycemic episodes should be apparent in 
the logbook displays, graphs, statistical tables, problem list, 
and recommendations). The user can override, ignore, or 
reject the recommendations of the CADS system and 
is instructed to immediately report any inappropriate or 
unsafe recommendation. The system is currently being 
implemented in a clinical research setting where its 
performance can be monitored carefully.
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